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Highlights 

• We developed a new generic physico-biochemical model for fecal bacteria. 

• We validated and evaluated the model for E. coli in estuarine and coastal waters. 

• Including UVA and UVB photo-inactivation improves E. coli die-off predictions. 

• Photo-inactivation is significant in clean waters but less significant with high CDOM. 

• Sediment composition should be considered when predicting peaks in turbid waters. 
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Abstract 

The risk of infection by enteric pathogens in bathing waters is generally monitored by using fecal 

indicator bacteria (FIB). Mechanistic models are efficient tools to predict FIB concentrations in 

bathing waters, both in near-future forecasting and in long-term climate change projections. 

However, most existing mechanistic FIB models are limited by the availability of observations for 

validation and incorporation of all relevant physical, biological, and chemical (physico-

biochemical) processes. Therefore, the quantitative influence of different physio-biochemical 

processes and impact factors is missing. To enhance the understanding of  FIB fate in different 

aquatic systems, we developed a comprehensive yet generically applicable physico-biochemical 

model, focused on Escherichia coli (E. coli). It includes a die-off module and a sediment 

interaction module. Separate validation of the two sub-modules demonstrated the reliability of our 

modeling approach. The die-off module shows a higher R2 value (0.88) and lower RMSE value 

(1.1 day-1) than the existing models (0.48–0.79, and 1.8–7.2 day -1). This demonstrated an 

improvement by adding Ultraviolet-A and Ultraviolet-B (UVB) inactivation and UV spectrum 

extinction due to colored dissolved organic matter (CDOM) absorption. According to our sediment 

module validation, considering the impact of sediment composition on E. coli attachment can 

improve the allocation of E. coli between waters and sediments. Sensitivity analysis showed that 

1) photo-inactivation is important in low CDOM waters, but not in high CDOM waters, where the 

UV penetration is limited; 2) the impact of sediment interaction can extend the duration of a peak 

event in high turbid waters. This work demonstrated the dominant impact factors in different 

aquatic systems for E. coli prediction. The new generic model enables better simulation of bathing 

water quality across different types of aquatic environments, which can be a useful tool to inform 

management at bathing sites. Future applications can choose processes selectively from the new 

FIB physico-biochemical model and couple it with appropriate hydrological/hydrodynamic 

models to address specific environmental conditions and research purposes.  
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1. Introduction 

Waterborne pathogens at bathing sites, originating from wastewater treatment plant effluents, 

agricultural runoff, combined sewer overflows, and sewer leakages or septage, pose a significant 

public health risk. The EU Bathing Water Directive (EU, 2006) regulates recreational bathing 

water quality based on biweekly fecal indicator bacteria (FIB) monitoring, such as Escherichia 

coli and Enterococcus. However, this frequency may not be sufficient for capturing peak events 

due to rapid changes in FIB concentrations (Jozić et al., 2024). High-frequency monitoring is 

costly, and sample transport and the standard enumeration method introduce time lags that limit 

early warning (Enns et al., 2012). FIB modeling helps address these gaps and enables near-future 

forecasting and the impacts of climate change on bathing water quality (King et al., 2021; Sterk et 

al., 2013).  

 

Current FIB prediction models mainly target rural catchments and sub-catchments and typically 

operate at a daily timestep (De Brauwere et al., 2014a; Kim et al., 2017; Ouattara et al., 2013; 

Tong et al., 2024; Worku Meshesha et al., 2020). They generally comprise three components: 1) 

an emission module estimating FIB sources to aquatic systems; 2) a physico-biochemical module 

describing in-system physico-biochemical processes of FIB; and 3) a hydrology/hydrodynamics 

module simulating horizontal and vertical transport. The emission and hydrological module 

components are typically site-specific, but the physico-biochemical processes tend to be consistent 

across aquatic environments (Cho et al., 2016; de Brauwere et al., 2014b). To study FIB fate and 

transport across various water types—from land to sea in both urban and rural settings—a 

universally applicable physico-biochemical FIB module is needed (Hipsey et al., 2008). However, 

recent review studies (Cho et al., 2016; Nelson et al., 2018) suggested that the current models lack 

sufficient details in photo-inactivation and sediment interaction, which are the key processes 

alongside Natural die-off (die-off in darkness) (de Brauwere, 2014). 

 

Photo-inactivation can have a strong impact on the FIB die-off. UV disinfection is widely used in 

waste stabilization ponds and constructed wetlands (Silverman and Guest, 2022; Zhang et al., 

2019). Sunlight inactivates FIB via two mechanisms: 1) endogenous damage, triggered by 

absorbing photons in the UVB and UVA (280 – 400 nm) range, and 2) exogenous damage, which 

needs external photosensitizers (e.g., natural organic matter) as media (Nelson et al., 2018). Given 

that shorter wavelengths have stronger effects on inactivation (Nelson et al., 2018), Photo-

inactivation rates should reflect cumulative effects across the spectrum. However, the current FIB 

physico-biochemical models tend to simplify this mechanism (Cho et al., 2016), by ignoring the 

photo-inactivation impact (De Brauwere et al., 2014a; Kim et al., 2017; Ouattara et al., 2013; 

Thorndahl et al., 2024; Worku Meshesha et al., 2020) or by estimating it from a total radiation 

coefficient while also neglecting light extinction caused by colored dissolved organic carbon 

(CDOM) (Shi et al., 2024; Tong et al., 2024).  

 

UV extinction is highly sensitive to water turbidity (Wang and Seyed-Yagoobi, 1994). CDOM is 

the dominant absorber for UV radiation in the ocean and inland waters (Kuhn et al., 1999; Laurion 

et al., 2000). CDOM are often adequate in FIB sources, like wastewater effluents and overflows 

(Gonsior et al., 2011; Kalev et al., 2021), and transport with FIB to bathing waters. Resuspension 

sediments from bather activities also reduce UV penetration (Graczyk et al., 2010). Therefore, 

                  



4 

 

CDOM and suspended sediment should be considered when calculating E. coli photo-inactivation. 

Given the clear positive relation between dissolved organic carbon (DOC) and CDOM 

concentrations in global aquatic environments (Fichot and Benner, 2011; Li et al., 2018), DOC 

concentration, which is easier to measure and commonly simulated in water quality models, can 

be used to estimate UV attenuation (Morris et al., 1995). To incorporate FIB photo-inactivation by 

the UVA+UVB spectrum into the new model, four steps need to be taken (Nelson et al., 2018): (1) 

characterizing the spectrum upon water surfaces; (2) estimating the spectrum extinction in waters; 

(3) predicting endogenous inactivation, and (4) exogenous inactivation. Since E. coli is not 

noticeably susceptible to exogenous inactivation (Nguyen et al., 2015), the fourth step is omitted 

in this study.  

 

Sediment serves as a reservoir for FIB in both fresh and marine waters (Fluke et al., 2019; Labite 

et al., 2010; Pachepsky and Shelton, 2011). To capture this, some FIB physico-biochemical models 

incorporate the sediment interaction, including attachment-detachment, sedimentation, 

resuspension, and hyporheic exchange (Kim et al., 2010; Kim et al., 2017; Shi et al., 2024; Thupaki 

et al., 2013). In most previous modeling studies, the attachment between FIB and suspended 

sediment is irreversible and determined by a constant partitioning rate, ignoring the positive 

relation between suspended sediment concentration and attached FIB (Garcia‐Armisen and 

Servais (2009). More recent approaches adopt a dynamic partitioning rate, based on suspended 

sediment concentrations and a constant partitioning coefficient (KSS), representing the absorption 

capacity of suspended sediment per unit to FIB (Bai and Lung, 2005; Gao et al., 2011; Thupaki et 

al., 2013). Nevertheless, the partitioning coefficients were valued arbitrarily in a range of 0.01 – 

10 m3 g-1. Kim et al. (2010, 2017) pointed out that the partitioning coefficient, as an intrinsic 

character determined by suspended sediment composition, is a function of the clay proportion in 

total suspended sediments (TSS). Incorporating this function in the model requires detailed TSS 

dynamics. Fortunately, given the progress of TSS simulation in current water quality models, this 

can be tackled by coupling the FIB physico-biochemical module with an existing TSS module.  

 

This study aims to develop a generic mechanistic FIB model incorporating the latest understanding 

of E. coli physico-biochemical processes. While the model is developed and validated based on E. 

coli data, it can be adapted to other fecal bacteria and viruses by reparameterization. Compared to 

the existing models, the new model 1) considers the photo-inactivation due to the UVA+UVB 

spectrum, in which extinction caused by CDOM and TSS is included; 2) introduces a dynamic KSS 

based on clay and non-clay sediment fractions. By comparing with observations from previous 

studies, the new functions have been validated individually via a box model. The sensitivity of the 

impact factors in different types of aquatic ecosystems was evaluated via sensitivity analysis. By 

coupling with a specific emission module and hydrology/hydrodynamics module, this new FIB 

model can be widely applied for FIB predictions in various water systems.  

 

2. Materials and Methods 

In this study, we first developed a new generic module representing key processes affecting E. coli 

in surface waters (section 2.1). The module was developed within Delwaq: the water quality model 

within the Delft3D-WAQ modelling framework (Deltares, 2020), which is based on the advection-

diffusion-reaction equation. We then applied a box model for model validation with literature data 

and sensitivity analysis. The box model functions as a single grid cell of 3D hydrodynamic models 

(Figure 1b). It can reproduce site-specific conditions for different environments by choosing 
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different input data: either from literature or from existing 3D model applications. By comparing 

with observations time, the box model enables efficient test, calibration, validation and stochastic 

analysis under varying hydrodynamic scenarios. 

 

Temperature and salinity are commonly and validation data from literature (Maraccini et al., 2016; 

Nguyen et al., 2015), we compared the new module with two existing model descriptions in 

Delwaq and in SWAT (section 2.2). We also assessed the sensitivity of E. coli die-off rates using 

boundary conditions from two 3D models representing different aquatic systems (section 2.3). 

Table 1 summarizes the simulation time, activated modules and impact factors for model 

comparison and the sensitivity analysis scenarios. The impact factors we considered in the study 

include temperature, salinity, radiation, DOC concentration, and sediment concentration and 

composition. 

 

2.1 FIB physico-biochemical model development 

As shown in Figure 1a, E. coli die through photo-inactivation and natural die-off. To represent 

the sediment interaction, we defined three bacterial states: 1) unattached E. coli in the water 

column; 2) attached E. coli; 3) sedimented E. coli, either in pore water or in deposited sediment. 

These E. coli states can transfer via attachment-detachment, deposition, resuspension, and 

hyporheic exchange. 

  

 

 
 

Figure 1, Schematization of the FIB model (a) and the box model scheme with required 

boundary inputs (b). Photo-inactivation refers to damage via UV radiation; natural die-off 

includes various loss processes (e.g., predation, nutrient limitation). CDOM represents colored 

dissolved organic carbon. 

 

E. coli die-off is modeled by a total die-off rate (𝑘𝑡𝑜𝑡, h-1) that combines natural die-off in darkness 

(𝑘𝑑𝑎𝑟𝑘, h-1) and endogenous photo-inactivation (𝑘𝑝ℎ𝑜𝑡𝑜, h-1). 𝑘𝑑𝑎𝑟𝑘 is determined by temperature 

and salinity (Chan et al., 2015). Details are provided in the supplementary information (SI 1.1). 

 

𝑘𝑡𝑜𝑡 =  𝑘𝑑𝑎𝑟𝑘 +  𝑘𝑝ℎ𝑜𝑡𝑜                  (1) 
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The total die-off applies to unattached bacteria. For attached and sedimented bacteria, photo-

inactivation was excluded, and temperature and salinity effects were reduced by 50% and 90%, 

respectively, due to sediment protection (Garzio-Hadzick et al., 2010). Key equations, parameters 

and sources are shown in 2.1.1-2.1.3 and Table S1, with model inputs and outputs listed in Table 

S2. 

 

2.1.1 Endogenous photo-inactivation 

To estimate photo-inactivation, we first derived the UVA + UVB spectrum from the total global 

solar radiation (TGSR). We used a constant UVA + UVB fraction (𝑓𝑈𝑉𝐴+𝑈𝑉𝐵) and standard UV 

spectra (𝐸𝑠𝑡1.05
(𝜆) and 𝐸𝑠𝑡1.5

(𝜆) (Kirk, 1981; (Annually, 1995), Figure S1) to redistribute the 

intensities across 300 – 400 nm. 𝑇𝑎𝑖𝑟_𝑚𝑎𝑠𝑠 is a temperature sensitivity coefficient for air mass given 

by (https://www.knmi.nl/over-het-knmi/nieuws/lichte-lucht-zware-lucht, Figure S2, Table S1).  

 

𝐸0(0, 𝜆) = 𝑇𝐺𝑆𝑅  × 𝑓𝑈𝑉𝐴+𝑈𝑉𝐵 ×  𝑓(𝜆)                 (2) 

 

 

𝑓(𝜆) =
(𝐸𝑠𝑡1.05

(𝜆)+ 𝐸𝑠𝑡1.5
(𝜆)) × 𝑇𝑎𝑖𝑟_𝑚𝑎𝑠𝑠

∑ [(𝐸𝑠𝑡1.05
(𝜆)+𝐸𝑠𝑡1.5

(𝜆)400
𝜆=300 ) × 𝑇𝑎𝑖𝑟_𝑚𝑎𝑠𝑠]

                 (3) 

 

 

The second step was estimating UV penetration with depth (𝑧, m), since CDOM is the main UV 

absorber in natural waters (Bricaud et al., 1981; Zhang et al., 2020). The total diffuse attenuation 

coefficient (𝐾𝑡𝑜𝑡(𝜆), m-1) was calculated as the sum of CDOM attenuation coefficient (𝐾𝐶𝐷𝑂𝑀(𝜆), 

m-1), backscattering coefficient of inorganic suspended sediment (𝑏𝑠𝑐𝑎𝑡𝑡𝑒𝑟 , m-1), and inherent 

attenuation coefficient of pure water (𝐾𝑝𝑢𝑟𝑒(𝜆), m-1).  

 

𝐸0(𝑧, 𝜆) = 𝐸0(0, 𝜆) × 𝑒𝐾𝑡𝑜𝑡(𝜆)×𝑧                  (4) 

 

 

𝐾𝑡𝑜𝑡(𝜆) =  𝐾𝐶𝐷𝑂𝑀(𝜆) + 𝐾𝑝𝑢𝑟𝑒(𝜆) + 𝑏𝑠𝑐𝑎𝑡𝑡𝑒𝑟                 (5) 

 

 

𝑏𝑠𝑐𝑎𝑡𝑡𝑒𝑟 = (𝑏𝑐𝑙𝑎𝑦
∗ × 𝐶𝑐𝑙𝑎𝑦 + 𝑏𝑠𝑎𝑛𝑑

∗ ×  𝐶𝑠𝑎𝑛𝑑) × 𝑃𝑏𝑎𝑐𝑘                 (6) 

 

 

𝐸0(0, 𝜆) is the UV intensity at the water surface (W m-2), 𝐾𝑝𝑢𝑟𝑒(𝜆) is calculated based on the 

studies of Morel et al. (2007); Smith and Baker (1981). 𝑏𝑐𝑙𝑎𝑦
∗   and 𝑏𝑠𝑎𝑛𝑑

∗  are the scattering 

coefficients of clay and sand (m2 g-1), respectively (Stramski et al., 2007); 𝑃𝑏𝑎𝑐𝑘  (-) is the 

backscattering probability (Bi et al., 2023), 𝐾𝐶𝐷𝑂𝑀(𝜆) is modeled as an exponential decay function 

(Jerlov, 2014; Shifrin, 1998): 

  

𝐾𝐶𝐷𝑂𝑀(𝜆) = 𝐴 ×  𝑒−𝑠𝑒×𝜆                  (7) 
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Where, 𝑠𝑒  (nm-1) is a spectral slope parameter representing CDOM composition, with a 

recommended value of 0.015 (Bricaud et al., 1981; Jerlov, 2014; Shifrin, 1998; Twardowski et al., 

2004). 𝐴, as an amplitude, reflects CDOM concentration. With the DOC concentration (𝐶𝐷𝑂𝐶) and 

CDOM extinction coefficient (𝐾𝐶𝐷𝑂𝑀(𝜆)) in natural waters (rivers, lakes, coastal seas) from 

previous studies (Huovinen et al., 2003; Laurion et al., 2000; Morris et al., 1995; Scully and Lean, 

1994), we developed a DOC–amplitude (A) relation (See 3.1). To make sure the relation is fitting 

for the UVA + UVB spectrum, only samples with more than three 𝐾𝐶𝐷𝑂𝑀  values across the 

spectrum were included (SI). 

 

The endogenous UV-induced reaction was calculated following Silverman and Nelson (2016). 

Details are in SI 1.1. 

 

2.1.2 Attachment and detachment with suspended sediment 

Bacterial attachment can be explicitly described by the extended Derjaguin-Landau-Verwey-

Overbeek (DLVO) theory (van Loosdrecht et al., 1989). To simplify calculations and use 

commonly available input data, we adopted the “fast” attachment-detachment kinetics (Thupaki et 

al., 2013). These assume that attachment-detachment processes are faster than other processes, and 

masses of unattached and suspended-sediment attached E. coli are in equilibrium all the time (Bai 

and Lung, 2005; De Brauwere et al., 2014a; Gao et al., 2011).  

 

𝑓𝑑𝑓 =  
𝐶𝑏, 𝑎𝑡𝑡𝑎𝑐ℎ

𝐶𝑏,𝑓𝑟𝑒𝑒+𝐶𝑏,𝑎𝑡𝑡𝑎𝑐ℎ
                 (8) 

 

𝑓𝑑𝑓 =  
𝐶𝑆𝑆×𝐾𝑆𝑆

1+𝐶𝑆𝑆×𝐾𝑆𝑆
                 (9) 

 

𝐶𝑆𝑆 =  𝐶𝑐𝑙𝑎𝑦 + 𝐶𝑛𝑜𝑛−𝑐𝑙𝑎𝑦                 (10) 

 

Where, 𝐶𝑏,𝑓𝑟𝑒𝑒 and 𝐶𝑏,𝑎𝑡𝑡𝑎𝑐ℎ are the concentrations of unattached E. coli and suspended-sediment 

attached E. coli (CFU m-3), respectively. 𝑓𝑑𝑓  represents the partitioning rate (-), 𝐶𝑆𝑆  is TSS 

concentration (g m-3). 𝐾𝑆𝑆 is the partitioning coefficient. Unlike a constant partitioning coefficient 

(𝐾𝑆𝑆, -), we defined it as a function of the percentage of clay (𝑃𝑐𝑙𝑎𝑦, %) in TSS (Kim et al., 2017). 

 

𝐾𝑆𝑆 = 10−1.6 × (𝑃𝑐𝑙𝑎𝑦)1.98                 (11) 

 

 

𝑃𝑐𝑙𝑎𝑦 =  
𝐶𝑐𝑙𝑎𝑦

(𝐶𝑐𝑙𝑎𝑦+𝐶𝑛𝑜𝑛−𝑐𝑙𝑎𝑦)
 × 100%                 (12) 

 

We distinguished clay (𝐶𝑐𝑙𝑎𝑦, g m-3) and non-clay sediment (𝐶𝑛𝑜𝑛−𝑐𝑙𝑎𝑦, g m-3) by the settling 

velocities (Table S1). The clay sediment represents fine sediment with higher E. coli attachment 

capacity than the coarser non-clay sediment.  
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2.1.3 Interaction with sediment 

Kim et al. (2017) indicated that sedimentation, resuspension, and hyporheic exchange are essential 

processes of the interactions between FIB and sediment. We assumed the unattached bacteria have 

no settling velocity, while attached bacteria settle based on a weighted average settling velocity of 

two suspended sediments (SI 1.2). Sedimentation and resuspension depend on shear stress. 

Hyporheic exchange is determined by sediment density, volumetric seepage velocity, and bacteria 

concentration in pore waters. Equations are detailed in the SI (SI 1.2-1.4). Sedimentation, 

resuspension and vertical transport of sediment were calculated by the Delwaq model (Deltares, 

2020) and coupled with the sediment–bacteria interaction module. 

 

2.2 Die-off module validation and comparison 

Table 1 lists the die-off module comparison scenarios (M0-M2). M0 is the new die-off module. 

M1 only considers the impact of temperature (SWAT model, (Kondo et al., 2021)); M2 considers 

the impacts of temperature, salinity, and photo-inactivation rates, estimated from visible light 

(Delwaq model, (Chan et al., 2015; Tong et al., 2024)). 

 

Our module requires DOC concentration as an input, but only few available datasets include DOC 

observations. This restricts the number of datasets for validation of our new module. We used a 

dataset (Table S3)from two field experiments in California: at Pillar Point Harbor, San Joaquin 

Marsh and Arroyo Burro Lagoon, representing marine, freshwater and brackish water, respectively  

(Maraccini et al., 2016; Nguyen et al., 2015). To construct a similar condition at these three 

locations, the box model used measured E. coli, DOC concentration, salinity, and water depth from 

these two field experiments as initial conditions, and records of air temperature and radiation from 

the National Weather Service (https://www.weather.gov/) as inputs. Given that the field 

experiments were in situ incubations, horizontal input was not considered here.  

 

Table 1. Different scenarios in model comparison and sensitivity analysis 
 Name Simulation time Active module Active factors Model 

source 

Model 

comparison 

M0 10 days Die-off T, S, I, DOC This study 

 M1 10 days Die-off T SWAT 

 M2 10 days Die-off T, S, I Delwaq 

Sensitivity 

analysis 

S1 1 year Die-off  T, S This study 

 S2 1 year Die-off T, S, I This study 

 S3 1 year Die-off T, S, I, DOC This study 

 S4 1 year Die-off +  

sediment interaction 

T, S, I, DOC,  

KSS_C
* 

This study 

 S5 1 year Die-off +  

sediment interaction 

T, S, I, DOC,  

KSS_D
* 

This study 

 E1 250 hours Die-off T, S This study 

 E2 250 hours Die-off T, S, I This study 

 E3 250 hours Die-off T, S, I, DOC This study 

 E4 250 hours Die-off +  

sediment interaction 

T, S, I, DOC, 

KSS_D
*  

This study 

*Note: KSS_C and KSS_D represent constant and dynamic partitioning rates, respectively. The KSS_C value  is 0.01 m3 g-

1 (Bai and Lung, 2005; Gao et al., 2011; Thupaki et al., 2013). T, S, and I are temperature, salinity and radiation, 

respectively. 
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2.3 Sensitivity analysis 

Temperature and salinity are commonly used in E. coli predictions. The new model added UV-

induced inactivation, UV extinction and sediment interaction. To explore these new functions' 

effects (Table 1), we performed a sensitivity analysis by incrementally adding new impact factors 

to the base scenario (S1 and E1). Five long-term scenarios (S1 – S5) represented stable low-flow 

conditions: S1) die-off module only controlled by T (temperature) and S (salinity); S2) die-off 

module controlled by T, S, and I (radiation), without the extinction; S3) the complete die-off 

module, including extinction; S4) the complete die-off module plus sediment interaction module 

with a constant partitioning coefficient (KSS_C); S5) the complete die-off module plus the complete 

sediment interaction module.  

 

In addition, four short-term scenarios (E1 – E4, Table 1) for peak E. coli contamination events 

were performed. By increasing the input of E. coli concentration from 0 to 2.4×106 CFU 100ml-1 

and lasting for three hours between hours 25th - 28th, an accidental E. coli injection due to a 

combined sewer overflow was reproduced. Then we checked the event duration (above 250 CFU 

100ml-1, based on the EU Bathing Water directive). The peak E. coli concentration was a weighted 

average of literature values (Erichsen et al., 2006; Thorndahl et al., 2024) and the injection duration 

was based on the dilution efficiency of the box model. For the impact factors, E1-3 were the same 

as S1-3, while E4 considered sediment interaction (S5). S4 was omitted because the constant 

partitioning coefficient tends to overestimate E. coli flux from sediment resuspension orders of 

magnitude in natural waters (Section 3.3), which is not comparable to other scenarios. 

 

The long- and short-term sensitivity analyses were performed using the box models with boundary 

inputs from two sites in the Netherlands, representing coastal (Katwijk) and estuarine (Scheldt) 

conditions (Table 2). Locations of the two sites are shown in Figure 2a-c. The time series’ 

horizontal boundary inputs covering one year with daily time resolution (see Table 2 and Figure 

S3) were derived from the output of two 3D models: the DCSM-FM North Sea model (Zijl et al., 

2013) for the Katwijk site in 2006 and the Scheldt estuary model for the Scheldt site in 2014 (Stolte 

and Schueder, 2019) (Figure S3). The bathing water areas are normally shallower than two meters, 

however, the output of the nearshore shallow area (<2m) in the two 3D models is not representative 

because of the spatial resolution. Therefore, we chose two meters (yearly average) to make sure 

the water level dynamics derived from the two sites are representative. The vertical boundary 

inputs, including air temperature and TGSR, were from KNMI (Koninklijk Nederlands 

Meteorologisch instituut, https://dataplatform.knmi.nl/).  
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Figure 2, Location in the Netherlands of the sites (red triangles) where model forcing conditions 

for the box models have been derived (b) for Katwijk and (c) Scheldt. 

 

The boundary inflow rate of the box model is determined based on an approximately 2.5-day 

residence time. The computational timestep is one hour, and the simulation times for each scenario 

are in Table 1. The first 5 simulation days serve as a spin-up. 

 

Table 2. General setup of the box models (time series at the boundary were taken from the North 

Sea model and the Scheldt model) 

 
 Parameter Unit Katwijk Scheldt 

General setup Initial E. coli  CFU 

100ml-1 

400 

Area m2 10000 

𝐶𝐷𝑂𝐶 g m-3 0.0 

𝐶𝑐𝑙𝑎𝑦 g m-3 0.0 

𝐶𝑠𝑎𝑛𝑑 g m-3 0.0 

Constant boundary Flow m3 day-1 0.5 

E. coli  CFU 

100ml-1 

400 (S1-S5) 

 0 or 2.4×106 (M1 – M4) 

Timeseries 

boundary 

Temperature ℃ 5.5 – 18.8 0.0 – 25.1 

Salinity Ppt 26.1 – 31.1 2.0 – 10.2 

TGSR W m-2 4.2 – 318 5 – 322 

𝐶𝐷𝑂𝐶 g m-3 1.0 – 3.0 3.6 – 5.5 
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𝐶𝑐𝑙𝑎𝑦 g m-3 0.1 – 7.8 4.2 – 14.0 

𝐶𝑠𝑎𝑛𝑑 g m-3 0.0 – 16.8 10.1 – 68.0 

Tau Pa 0.0 – 0.8 0.0 – 0.7 

 𝑧 M 0.8 – 3.5 1.95 – 2.1 

 

2.4 Sediment interaction module validation 

The validation of the sediment interaction module was also based on the two box models in section 

2.3. Observations of E. coli in waters and sediments by the enumeration method were collected 

from previous studies (Devane et al., 2020; Fluke et al., 2019; Kim et al., 2010; Labite et al., 2010; 

Pachepsky and Shelton, 2011). Since our model aims to be applied to natural surface waters, only 

observational locations in natural waters, such as rivers, lakes, and coastal seas, were included. S5 

was run with a gradient of E. coli boundary concentrations (4×102, 4×103, 4×104, and 4×105 CFU 

100ml-1), and the simulated E. coli distributions between waters and sediments were compared 

with observations.  

 

We also compared KSS_D (S5) and KSS_C (S4) with a value of 0.01 m3 g-1, which is widely used in 

previous modeling work (Bai and Lung, 2005; Gao et al., 2011; Thupaki et al., 2013). Hence, we 

had 16 simulations (2 areas × 4 input concentrations × 2 types of KSS) in total for the sediment 

interaction module validation. Hereafter, each simulation is labeled as “scenario name + area”, e.g., 

“S5_Katwijk”. 

 

3. Results and discussion 

3.1 Photo-inactivation module 

Since DOC data is more accessible than CDOM from observations and simulation in water quality 

models, using DOC concentration to calculate KCDOM (attenuation coefficient of UV by CDOM, 

in eq. 7) improves input accessibility. Therefore, we established a relation (𝐴 =  179.6 × 𝐶𝐷𝑂𝐶
1.19) 

between the amplitude A (in eq. 7), which is a proxy of CDOM abundance in waters, and DOC 

concentrations from literature (Figure 3). This empirical relation enables KCDOM calculation from 

DOC concentrations. 
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Figure 3: Relation between DOC concentration and amplitude (insert shows detail for CDOC < 2 

mg l-1), based on published observation data 

 

In most locations, our new die-off module (M0) captured the observed decline of E. coli 

concentrations in the field experiments by Maraccini et al. (2016) (Figure 4). However, the 

predictions of Arroyo Burro – Winter I and San Joaquin Marsh – Winter I were relatively poor 

compared to others. As the UV spectrum prediction in eq. 2 matched observations well (Figure 

S5), two possible factors may explain how the UV extinction calculation leads to these deviations.  
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Figure 4, Validation of the die-off module (M0) in three sites (a-c in winter; d-g in summer. 

Observations from Maraccini et al., 2016). 

 

Due to the insufficient input data for a multi-layer water column model, our modelling simulations 

have no vertical variation, meaning the model results represent homogenous shallow water. 

However, the error bars of the observed die-off rate, representing the ranges of E. coli 

concentration at different water layers between 2 cm and 99 cm, indicate heterogeneous vertical 

distributions. Contrarily, the samples from Arroyo Burro – Winter I and San Joaquin Marsh – 

Winter are only from a single layer at 15 cm (Maraccini et al., 2016). Therefore, the first possibility 

is that the observations in these two sites with a single-layer sampling are not representative of the 

average concentration in the whole column.  

 

Since both poor performance results happened in winter, another explanation could be the 

influence of the seasonal variation of terrestrial input. Pillar Point Harbor, Arroyo Burro, and San 

Joaquin Marsh represent marine, brackish, and freshwater sites, respectively. Compared to Pillar 

Point and Arroyo Burro, San Joaquin Marsh is more vulnerable to land-based impacts (Maraccini 

et al., 2016). Terrestrial input, from catchments and wastewater treatment plants, can strongly 

impact the composition of CDOM in receiving waters (Bogard et al., 2019; Wilkinson et al., 2013). 

However, the variation of UV absorption capacity, triggered by the changing CDOM composition 

(Twardowski et al., 2004), was ignored in our model. We have 𝑠𝑒 as a parameter to adjust the 
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impact from CDOM compositions in the M0 module, but set as a constant value so far. 𝑠𝑒 could 

be parameterized by users for specific regions in future applications. 

 

3.2 Die-off model comparison 

According to the comparisons of die-off rates between different simulations and observations 

(Maraccini et al., 2016 and Nguyen et al., 2015) (Figure 5), the prediction from our M0 module 

was better than existing approaches (M1 and M2) based on the Root Mean Squared Error (RMSE) 

and R-Squared (R2) (details in S2). The M1 module (Figure 5b, e), which calculated the die-off 

rate without photo-inactivation damage, highly underestimated the observed die-off rates. The 

results from the M1 module (without radiation) only varied in a narrow range, between 0 and 2 

day-1. On the contrary, using visible light intensity to quantify photo-inactivation damage (M2, 

with visible light radiation) significantly overestimated the die-off rates (Figure 5c, f, h).  

 

 
 

Figure 5, Comparison of the die-off modules. Symbols, circles in (a), (d), (g), triangles in (b) and 

(c) and squares in (c), (f) and (h) represent the results from M0, M1 and M2, respectively. 
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Observations are from (Maraccini et al., 2016 and Nguyen et al., 2015). Error bars show ± one 

standard error of duplicates.  

 

As shown in Figure 5g-h, the fluctuation of total radiation at water surfaces varied between 200 

and 300 W m-2, which is a considerably narrow range compared to the seasonal variation in other 

regions (Iqbal, 2012). Besides, there was no distinct relation between total radiation at surface 

water and observed/modelled die-off rates. For DOC, Figure 5I shows that the highest DOC 

concentrations (dark purple) are associated with the lowest die-off rates. These indicate that in a 

region with less seasonal fluctuation of solar radiation but high fluctuation of DOC, E. coli photo-

inactivation is highly correlated with light absorption of CDOM.  

 

Water temperature and salinity cannot be used to predict the die-off rate solely (M1), especially in 

low-temperature periods (Figure 5b). However, when high DOC concentration (> 6 mg L-1) 

restricts the penetration of light, modelled die-off rates from M0 are in a similar range (0 – 2 day-

1) to the predictions from M1. This suggests that in waters rich in CDOM, the impact of photo-

inactivation is less distinguishable. This is probably why the M1 module has been widely used for 

modelling E. coli die-off rate in small catchments and wetlands (De Brauwere et al., 2014a; Niazi 

et al., 2015; Sowah et al., 2020; Worku Meshesha et al., 2020) where the CDOM concentration is 

usually high (Seitzinger et al., 2005).  

 

On the contrary, solar radiation is essential for calculating E. coli die-off rate in “clearer” coastal 

waters (Chan et al., 2015; Gao et al., 2015; Huang et al., 2015; Huang et al., 2017; Thupaki et al., 

2013), but calculating the photo-induced damage as a linear function of total radiation and 

neglecting the extinction by CDOM (as in the M2 model, Figure 5h) overestimated the E. coli 

die-off rate. CDOM concentrations in coastal waters have seasonal patterns due to riverine input 

and in situ primary production (Zweifel et al., 1995), which can induce a significant impact on E. 

coli die-off variation.  

 

3.3 Validation of sediment interaction module 

Few studies measured suspended sediment attached E. coli due to sampling uncertainty (Devane 

et al., 2020). Therefore, we used the E. coli distribution between waters and sediments from 

previous studies to validate the sediment interaction module (section 2.4) (Devane et al., 2020; 

Fluke et al., 2019; Kim et al., 2010; Labite et al., 2010; Pachepsky and Shelton, 2011). Observed 

ratios of E. coli concentrations in waters versus in deposited sediments ranged from 2:1 (10th 

percentile) to 1263:1 (90th percentile) (Figure 6a). S5 (dynamic sediment partitioning coefficient, 

KSS_D) simulations yielded ratios of 11:1–281:1, within the observed 10th - 90th percentiles (Figure 

6b). The average ratio from S5_Katwijk was 66:1, which was higher than that from the S5_Scheldt 

(14:1), resulting from a higher clay proportion in the Katwijk model(Figure S4). In contrast,  the 

ratio in S4_Katwijk (3265:1) was lower than in S5_Scheldt (4797:1) (Figure 6c). Besides, the 

KSS_C allocated more E. coli into the deposited sediment, leading to a ratio up to 14791:1, well 

above the 90th percentile of observations. 

 

 

                  



16 

 

 
Figure 6, E. coli concentrations in waters vs sediments collected from previous studies (a) and 

from the box models S5 with KSS_D (b) and S4 with KSS_C (c). The Error bars mean fluctuation 

within a year. The red lines represent the 10th (2:1) and 90th (1263:1) percentiles of the observed 

ratios. The black lines represent the maximum and minimum ratios from the simulation results. 

 

The comparison in Figure 6b indicates that using clay and non-clay components is a reasonable 

approach for modeling E. coli attachment-detachment. The KSS_C value used in S4 (0.01 m3), 

commonly applied in previous models (Bai and Lung, 2005; Gao et al., 2011; Thupaki et al., 2013), 

appears too high for E. coli attachment (Figure 6c). Direct KSS measurements are rare, only limited 

groundwater studies reported the KSS values between 1 × 10-4 and 1 × 10-6  m3 g-1 (Gantzer et al., 

2001; Lindqvist and Enfield, 1992; Reddy and Ford, 1996). This range was consistent with the 

KSS_D simulation by the box models (Figure S4), but two to four orders of magnitude lower than 

the KSS_C. In addition, using KSS_C also ignored the impact of TSS composition on E. coli 

attachment.  

 

3.4 Sensitivity analysis  

In our long-term scenarios (S1-S5, Table 1), scenario S2 (without CDOM extinction) predicted 

lower E. coli concentrations than the other scenarios (Figure 7). As discussed in section 3.2, 

ignoring the extinction by CDOM can overestimate the UV-induced damage, whereas including 

CDOM extinction (S3) reduces radiation effects. The Scheldt_S3 concentrations were similar to 

the Scheldt_S1 (T-test, P = 4.39, details in S2)(Figure 7b) due to high DOC concentrations and 

aligned seasonal patterns of DOC concentration and radiation (Figure S3). These indicate that the 

UV penetration is too low to inactivate E. coli. This explains why temperature alone can 

“adequately” predict E. coli in catchments with high DOC concentrations (De Brauwere et al., 

2014a; Niazi et al., 2015; Sowah et al., 2020; Worku Meshesha et al., 2020). However, Katwijk_S1 

showed 44% higher average unattached E. coli concentration than Katwijk_S3 (Figure 7a), 

highlighting the importance of UV inactivation in clear waters with low DOC concentrations 

(Chan et al., 2015; Gao et al., 2015; Huang et al., 2015; Huang et al., 2017; Thupaki et al., 2013). 
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Figure 7, Long-term sensitivity analysis: unattached E. coli concentration simulations from 

Katwijk_S1-Katwijk_S5 (a) and from Scheldt_S1-Scheldt_2 (b). The scenarios are in Table 1.  

 

The concentrations in S5 were very similar to S3 (T-test, P = 4.01 for Katwijk; 2.83 for Scheldt). 

Since the long-term scenarios represent a steady baseflow/low-flow period (Table 2), E. coli 

concentrations in waters and in sediments remain in equilibrium. As a result, sediment interaction 

has no visible effect in the long-term sensitivity analysis. 

 

In the short-term sensitivity analysis (E1-E4, Table 1), E4 (including interactions with sediment) 

had a bigger tail than the other scenarios (Figure 8). This extended tail appeared in both summer 

and winter and started earlier in the Scheldt_E4. Due to high turbidity, the event duration in 

Scheldt_S4 was prolonged by 29-44 hours compared to E3 in both seasons. In Katwijk, the 

difference among E1, E2, and E3 was significant, but the difference between E3 and E4 above the 

threshold was insignificant (Figure 8a-b).  

 

As mentioned in 2.3, the short-term sensitivity analysis simulated peak E. coli pollution events. 

Since no sediment interaction was involved in E1-3, deposited sediment could not accumulate and 

release E. coli during and after the peak event. In E4, higher TSS in the Scheldt created a larger E. 

coli reservoir in deposited sediment than in Katwijk_E4 during peak events, leading to greater 

post-event release. The longer exceedance in Scheldt_E4 shows that sediment interaction can 

extend the E. coli pollution above the threshold by roughly 30 hours after a peak. To prevent the 

post-event pollution and warn bathers of a potential extended risk, sediment interaction could be 

included in E. coli forecasts for highly turbid waters, especially during peak events. 
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Figure 8, Short-term sensitivity analysis. The Katwijk box model results for winter (a) and 

summer (b); The Scheldt model results for winter (c) and summer (d). The red dashed line is 250 

CFU 100ml-1. E1-4 represents the scenarios in Table 1.  

 

3.5 Model limitations and applications 

Model validation and comparison with the existing models indicated that the new model can give 

a more reliable prediction of photo-inactivation and distribution of E. coli between waters and 

sediments. Incorporating UV spectrum, DOC and suspended sediment concentrations for photo-

inactivation calculation improved the dynamics of prediction. The introduction of the dynamic 

partitioning coefficient added the effect of suspended sediment composition on the attachment 

process. However, the new model requires additional inputs (Table 2, Table S2) and increases 

model complexity. Besides, variability of CDOM composition may affect UV extinction, but is 

not yet included in the box models. The correlation between Kss and Pclay was based on a regression 

model from a previous study and requires more observational data in future studies. Currently, the 

new model has been validated only in box models, instead of in whole hydrology/hydrodynamics 

model domains. Future applications could integrate it with 1D/2D/3D hydrology and 

hydrodynamics models at various temporal-spatial scales. Parameters listed in Table S1 could be 

re-parameterized for other fecal bacteria or viruses with similar processes to E. coli. Future work 

is planned on applying our new E. coli model to a coupling model (inland 1D hydrology model + 

nearshore 3D hydrodynamic model) to forecast E. coli and support bathing water management 

across the source-to-sea system.   
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4. Conclusions  

 

A new FIB physico-biochemical model has been developed to predict E. coli concentrations in 

natural waters and support bathing water management. It consists of a die-off module and a 

sediment interaction module, including the independent natural die-off, photo-inactivation, UV 

extinction, attachment-detachment, sedimentation, resuspension, and hyporheic exchange. The 

main conclusions from model validation, comparison and sensitivity analysis are as follows: 

 

(1) The new die-off module has a lower RMSE value (1.1 day-1) and a higher  R2 value (0.88) 

than the existing models (1.8–7.2 day -1, and 0.48–0.79), indicating an improvement in 

agreement with observations. However, the validation dataset remains limited. It is 

recommended that future studies provide comprehensive FIB die-off data alongside 

relevant environmental factors.  

(2) The model comparisons showed that photo-inactivation is crucial for estimating E. coli die-

off rate, and CDOM extinction coefficient plays a key role in determining UVA + UVB 

extinction while DOC concentration is below ~6 mg L-1.  

(3) Sediment interaction module using dynamic partitioning coefficient produced the water-

sediment E. coli distribution ratio within the observed 10th-90th percentile range, while the 

module using constant partitioning coefficient overestimated the ratio.  

(4) Sensitivity analysis suggested that sediment release after a peak event can extend the 

pollution to roughly 30 hours in highly turbid waters. Therefore, sediment interaction 

should be considered in E. coli modelling and forecasting.  

 

Given the high flexibility of the model, it can be coupled with hydrology and hydrodynamic 

models and applied to FIB modelling in various bathing waters. Based on the sensitivity analysis, 

we also recommend different process options for different aquatic systems. This new model offers 

a reliable tool for predicting pathogen risk in near-future forecasting and climate change 

projections to support bathing safety management.  
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